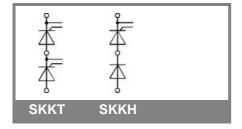
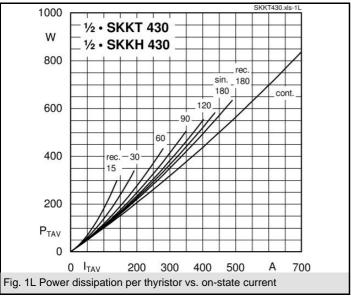
SKKT 430, SKKH 430

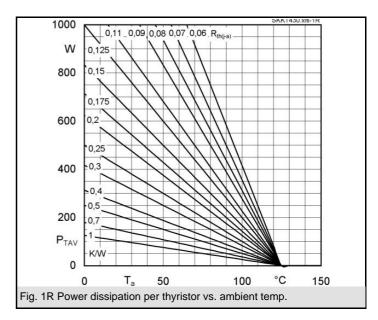
Thyristor / Diode Modules

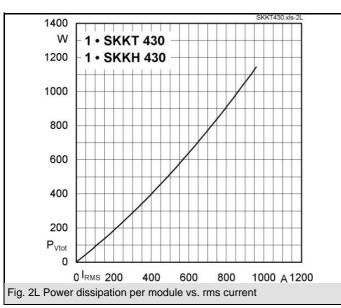
SKKT 430 SKKH 430

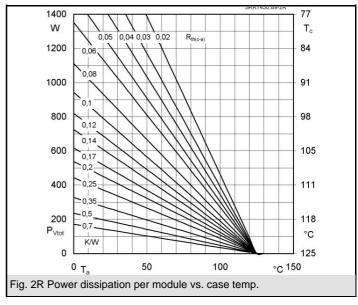
Features

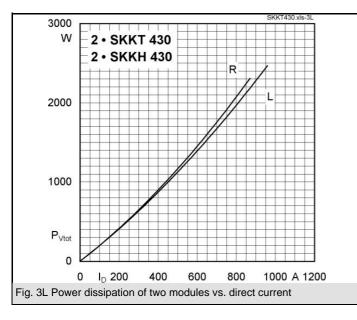

- Heat transfer through aluminium nitride ceramic isolated metal baseplate
- Precious metal pressure contacts for high reliability
- UL recognized, file no. E 63 532

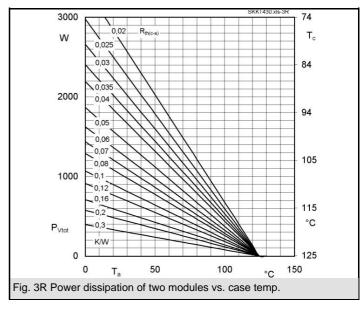

Typical Applications*

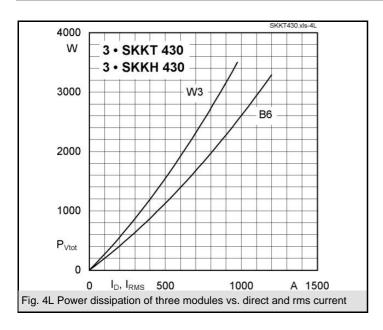

- · AC motor softstarters
- Input converters for AC inverter drives
- DC motor control (e. g. for machine tools)
- Temperature control (e. g. for ovens, chemical processes)
- Professional light dimming (studios, theaters)
- 1) See the assembly instructions
- 2) The screws must be lubricated

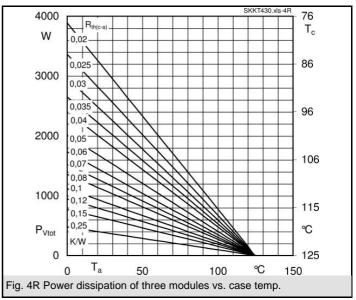

V _{RSM}	V_{RRM}, V_{DRM}	I _{TRMS} = 700 A (maximum value for continuous operation)		
V	V	I _{TAV} = 430 A (sin. 180; T _c = 86 °C)		
1700	1600	SKKT 430/16E	SKKH 430/16E	
2000	2000	SKKT 430/20EH4	SKKH 430/20EH4	
2200	2200	SKKT 430/22EH4	SKKH 430/22EH4	

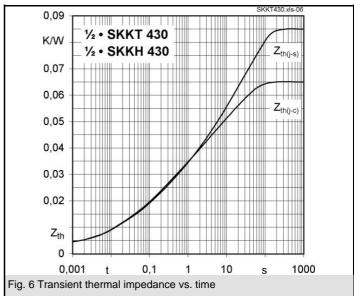

Symbol	Conditions	Values	Units
I _{TAV}	sin. 180; T _c = 85 (100) °C;	440 (305)	Α
I_D	P16/300F; T _a = 35 °C; B6	820	Α
I _{RMS}	P16/300F; T _a = 35 °C; W3C	3 * 630	Α
I _{TSM}	T _{vi} = 25 °C; 10 ms	15000	Α
	T _{vi} = 125 °C; 10 ms	13000	Α
i²t	$T_{vj} = 25 ^{\circ}\text{C}; 8,3 \dots 10 \text{ms}$	1125000	A²s
	T _{vj} = 125 °C; 8,3 10 ms	845000	A²s
V_{T}	$T_{vj} = 25 ^{\circ}\text{C}; I_{T} = 1700 \text{A}$	max. 1,65	V
$V_{T(TO)}$	$T_{vj} = 125 ^{\circ}\text{C}$	max. 0,95	V
r_T	T _{vj} = 125 °C	max. 0,35	mΩ
$I_{DD}; I_{RD}$	T_{vj} = 125 °C; V_{RD} = V_{RRM} ; V_{DD} = V_{DRM}	max. 150	mA
t _{gd}	$T_{vj} = 25 ^{\circ}\text{C}; I_{G} = 1 \text{A}; di_{G}/dt = 1 \text{A/}\mu\text{s}$	1	μs
t _{gr}	$V_{D} = 0.67 * V_{DRM}$	2	μs
(di/dt) _{cr}	T _{vj} = 125 °C	max. 200	A/µs
(dv/dt) _{cr}	T _{vj} = 125 °C	max. 1000	V/µs
t_q	$T_{vj}^{-3} = 125 ^{\circ}\text{C}$,	100 200	μs
I _H	$T_{vj} = 25 ^{\circ}\text{C}$; typ. / max.	150 / 500	mA
I_{L}	T_{vj} = 25 °C; R_G = 33 Ω ; typ. / max.	300 / 2000	mA
V _{GT}	$T_{vj} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 3	V
I _{GT}	$T_{vj} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 200	mA
V_{GD}	$T_{vj} = 130 ^{\circ}\text{C}; \text{ d.c.}$	max. 0,25	V
I_{GD}	T_{vj} = 130 °C; d.c.	max. 10	mA
R _{th(j-c)}	cont.; per thyristor / per module	0,065 / 0,032	K/W
R _{th(j-c)}	sin. 180; per thyristor / per module	0,068 / 0,034	K/W
R _{th(j-c)}	rec. 120; per thyristors / per module	0,073 / 0,036	K/W
R _{th(c-s)}	per thyristor / per module	0,02 / 0,01	K/W
T_{vj}		- 40 + 125	°C
T_{stg}		- 40 + 125	°C
V_{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3600 / 3000	V~
V_{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min. for SKKH4	4800 / 4000	V~
M _s	to heatsink	5 ± 15 % ¹⁾	Nm
M_t	to terminal	12 ± 15 % ²⁾	Nm
а		5 * 9,81	m/s²
m	approx.	1420	g
Case	SKKT	A 60 a	
	SKKH	A 66 a	

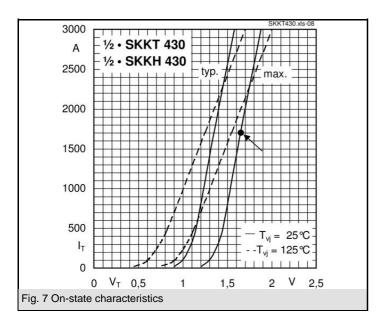


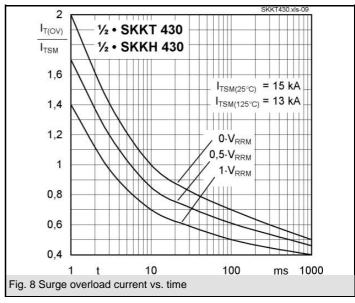


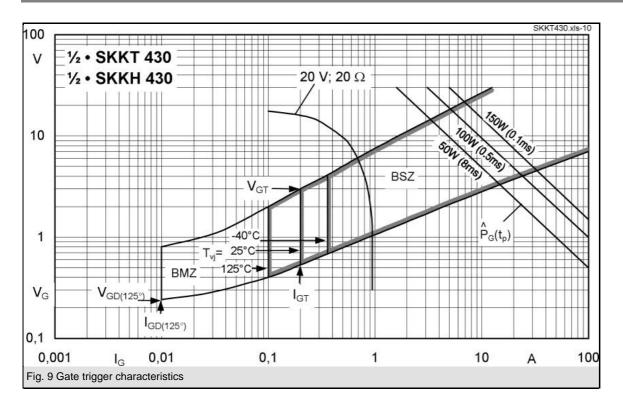


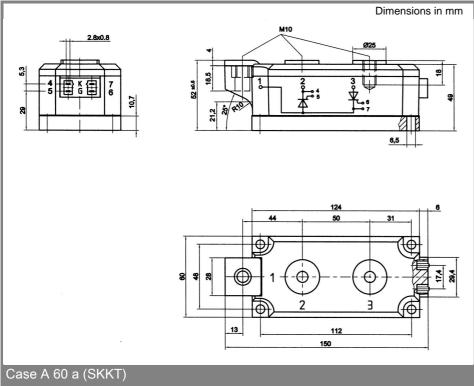


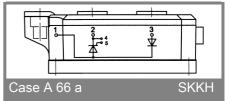





SKKT 430, SKKH 430







^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.